Lecture 1: Graphs and Modular Operads

A \mathfrak{C} -coloured **cyclic operad** is an algebraic structure consisting of:

- an involutive set of colours $\ensuremath{\mathfrak{C}}$;
- for each $c_1,\ldots,c_n\in \mathfrak{C}$ a Σ_n -set P (c_1,\ldots,c_n) ;
- a family of equivariant, associative and unital composition operations

$$\mathsf{P}(c_1,\ldots,c_n) \times \mathsf{P}(d_1,\ldots,d_m) \longrightarrow \mathsf{P}(c_1,\ldots,\hat{c}_i,\ldots,d_1,\ldots,\hat{d}_j,\ldots,d_m),$$

when $c_i = d_j$.

A \mathfrak{C} -coloured modular operad is a cyclic operad which also has

- a family of equivariant contraction operations

$$\mathsf{P}(c_1,\ldots,c_n)\longrightarrow\mathsf{P}(c_1,\ldots,\hat{c}_i,\ldots,\hat{c}_j,\ldots,c_n),$$

when $c_i = c_j$.

satisfying some axioms.

Example: A modular operad of surfaces

*-autonomous categories are closed symmetric monoidal categories with a global dualizing object so that $(a^{\dagger})^{\dagger} \cong a$. Show that all strict *-autonomous categories are examples of cyclic operads. (See Example 2.2 in D-C–H).

Goal for Today:

There is an equivalence of categories:

$$\mathsf{ModOp} \xrightarrow{N} \mathbf{Set}_{Segal}^{\mathsf{U}^{op}}.$$

Graphs:

A graph G is a diagram of finite sets:

$$i \stackrel{\sim}{\longrightarrow} A \stackrel{s}{\longleftarrow} D \stackrel{t}{\longrightarrow} V$$

- *i* is a free involution;
- *s* is a monomorphism.

Graphs: Edges and Internal Edges

The involution on half-edges $i : a \mapsto a^{\dagger}$ determines the **edges** of a graph.

- An **edge** is just an *i*-orbit $[a, a^{\dagger}]$.
- An **internal edge** is an edge of the form $[b, b^{\dagger}]$ where both b and b^{\dagger} are in D.

Special Graphs, Boundaries and Neighbourhoods

Figure 1: The exceptional edge \updownarrow and the 4-star \star_4 .

Definition

- The **boundary** of a graph: $\partial(G) = A \setminus D$.
- The **neighbourhood** of $v \in V(G)$: $nb(v) = t^{-1}(v) \subseteq D$.

A loop with 2 nodes and a nodeless loop

Draw a graph G with $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $D = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $V = \{v_1, v_2, v_3, v_4\}$ and i(n) = n - 1 for n = 2, 4, 6, 8.

Definition

- The star of a graph \bigstar_G is the one-vertex graph with $A = \partial(G) \sqcup$ $\partial(G)^{\dagger}$, $D = \partial(G)^{\dagger}$ and $\partial(\bigstar_G) = A \setminus D = \partial(G)$. In other words, $\bigstar_G = \bigstar_{\partial(G)}$.
- If v is a vertex in G, the star of a vertex \bigstar_v is the one-vertex graph with $A = nb(v) \sqcup nb(v)^{\dagger}$ and $\partial(\bigstar_v) = nb(v)^{\dagger}$.

Exercise

For the graph G drawn above, write down \bigstar_G and \bigstar_v for each $v \in V(G)$.

Graphs are diagrams in FinSet in the shape of

$$\mathcal{I}:=\quad i \overset{s}{\frown} \bullet \overset{s}{\longleftarrow} \bullet \overset{t}{\longrightarrow} \bullet$$

Definition

A natural transformation $f: G \rightarrow G'$ is called an **embedding** if

$$i \stackrel{i}{\frown} A \stackrel{s}{\longleftarrow} D \stackrel{t}{\longrightarrow} V$$

$$\downarrow_{f} \qquad \qquad \downarrow_{f} \qquad \qquad \downarrow_{f} \qquad \qquad \downarrow_{f}$$

$$i' \stackrel{c}{\frown} A' \stackrel{s'}{\longleftarrow} D' \stackrel{t'}{\longrightarrow} V'$$

- the right-hand square is a pullback;
- V
 ightarrow V' a monomorphism.

There is a class of vertex embeddings

$$\bigstar_v \hookrightarrow G$$

for every $v \in V(G)$:

Example

There is a class of vertex embeddings

 $\bigstar_v \hookrightarrow G$

for every $v \in V(G)$:

Example

Explicitly:

$$nb(v) \sqcup nb(v)^{\dagger} \xleftarrow{s} nb(v) \xrightarrow{t} \{v\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \xleftarrow{s'} D \xrightarrow{t} V.$$

Embeddings are not necessarily injective on half-edges.

There is a natural embedding

$$\bigstar_n \hookrightarrow \xi \bigstar_n$$

which is not injective on half-edges.

Graphical Maps

Definition

A graphical map $\varphi: G \to G'$ consists of:

- a map of involutive sets $\varphi_0: A \to A'$;
- a function $\varphi_1: V \to \mathsf{Emb}(G')$ satisfying the following conditions:
 - The embeddings $\varphi_1(v)$ have no **overlapping** vertices
 - For each v, the diagram:

$$\begin{array}{ccc} \mathsf{nb}(v) & \stackrel{i}{\longrightarrow} & A \\ \cong & & \downarrow & \downarrow \varphi a \\ \partial(\varphi_1(v)) & \longrightarrow & A' \end{array}$$

commutes.

- If $\partial(G) = \emptyset$, then there exists a v in V so that $\varphi_1(v) \neq \updownarrow$.

An **inner coface map** $d_v : G \to G'$ is a graphical map defined by "blowing-up" a single vertex v in G by a graph $(d_v)_1$ which has precisely **one** internal edge.

An outer coface map is either:

- an **embedding** $d_e: G \to G'$ in which G' has precisely **one** more internal edge than G or
- an embedding $\uparrow \rightarrow \bigstar_n$.

A **codegeneracy map** $s_v : G \to G'$ is a graphical map defined by "blowing-up" a vertex v in G by \updownarrow .

The **graphical category** U is the category whose objects are connected graphs. The morphisms are the graphical maps.

The modular operad $\langle G \rangle$ generated by a graph G is the free modular operad whose:

- set of colours is the set of half-edges A;

- a collection
$$E(a_1, \ldots, a_n) = \begin{cases} \{v\} \text{ if } (a_1, \ldots, a_n) = \partial(\star_v) \\ \emptyset \text{ otherwise.} \end{cases}$$

-
$$\langle G \rangle = F(E)$$

Proposition (Proposition 2.25 HRY2) The assignment $G \mapsto \langle G \rangle$ defines a faithful functor $U \to ModOp$ which is injective on isomorphism classes of objects.

The category of **graphical sets** is $Set^{U^{op}}$.

- X_G : evaluation of X at $G \in U$.
- $\varphi: G \to G' \Rightarrow \varphi^*: X_{G'} \to X_G.$
- The **representable presheaf** at G:

U[G] := U(-; G) $U[G]_H := U(H, G)$

for all graphs H.

Internal edges \Rightarrow diagram of embeddings

in U.

Let

The embeddings $\bigstar_{v} \hookrightarrow G$ induce a Segal map

$$X_G \longrightarrow X_G^1 \subseteq \prod_{v \in V(G)} X_{\bigstar_v}$$

which factors through X_G^1 .

The embeddings $\bigstar_v \hookrightarrow G$ induce a Segal map

$$X_G \longrightarrow X_G^1 \subseteq \prod_{v \in V(G)} X_{\bigstar_v}$$

which factors through X_G^1 .

Exercise

In the case when $X_{\uparrow} = *$, show that $X_G^1 = \prod_{v \in V(G)} X_{\bigstar_v}$.

A graphical set $X \in \operatorname{Set}^{U^{op}}$ is strictly **Segal** if the Segal map

$$X_G \longrightarrow X_G^1 \subseteq \prod_{v \in V(G)} X_{\bigstar_v}$$

is a bijection for each G in U.

$$\begin{split} & N: \mathsf{ModOp} \longrightarrow \mathsf{Set}^{\mathsf{U}^{op}} \\ & \mathsf{NP}_G = \mathsf{ModOp}(\langle G \rangle, \mathsf{P}) \end{split}$$
 for any $\mathsf{P} \in \mathsf{ModOp}$ and any $G \in \mathsf{U}$.

 $N: ModOp \longrightarrow Set^{U^{op}}$ $NP_G = ModOp(\langle G \rangle, P)$ for any $P \in ModOp$ and any $G \in U$.

 NP_G is "the set of P decorations of the graph G":

-
$$NP_{\uparrow} = ModOp(\langle \uparrow \rangle, P) = \mathfrak{C};$$

-
$$NP_{\star_n} = ModOp(\langle \star_n \rangle, P) = P(c_1, \ldots c_n).$$

Theorem (Theorem 3.6 HRY2) The nerve functor is fully faithful. Moreover, the following statements are equivalent for $X \in \text{Set}^{U^{op}}$.

- There exists a modular operad P and an isomorphism $X \cong NP$.
- X satisfies the strict Segal condition.

Theorem (Theorem 3.6 HRY2) The nerve functor is fully faithful. Moreover, the following statements are equivalent for $X \in \text{Set}^{U^{op}}$.

- There exists a modular operad P and an isomorphism $X \cong NP$.
- X satisfies the strict Segal condition.

In other words:

$$\mathsf{ModOp} \xrightarrow{N} \mathbf{Set}_{Segal}^{\mathsf{U}^{op}}.$$

Given a graph $G \in U$, we now have two ways to assign an object in Set^{U^{op}} to G:

- the representable presheaf U[G],
- taking the nerve of the modular operad $\langle G \rangle$, $N \langle G \rangle$.

The representable U[G] is a sub-object of $N \langle G \rangle$ (since $J : U \rightarrow ModOp$ is faithful) but they nearly never coincide.

- Let G be the loop with one node and show $U[G] \subset N \langle G \rangle$.
- Show that we have $U[\star_0] = N \langle \star_0 \rangle$.

Earlier we defined the notion of (inner and outer) coface maps of U. Given a coface map δ with codomain G, one can define the **horn** $\Lambda^{\delta}[G]$ which is a sub-object of the representable object U[G]. A **strict inner Kan** graphical set is a presheaf $X \in \text{Sets}^{U^{op}}$ such that every diagram

with δ an inner coface map admits a unique filler.

Further Directions

Michelle Strumila shows in her PhD thesis that :

Theorem (Strumila)

 $N: ModOp \longrightarrow Set^{U^{op}}$

is fully faithful. Moreover, the following statements are equivalent for $X \in \text{Set}^{U^{op}}$.

There exists a modular operad P and an isomorphism $X \cong NP$. X satisfies the strict Segal condition.

X is strict inner Kan.

If one relaxes the inner Kan condition you arrive at a model for **quasi** or ∞ -**modular operads**. Following the example of dendroidal sets, one could find a model category structure in which the weak inner Kan graphical sets are the fibrant objects. Because the graphical categories for cyclic operads, wheeled properads, etc can all be derived from U this would simultaneously create models for many flavours of ∞ -"operads".