
Lecture 1: Graphs and Modular
Operads



Cyclic Operads

A C-coloured cyclic operad is an algebraic structure consisting of:

- an involutive set of colours C;

- for each c1, . . . , cn ∈ C a Σn-set P(c1, . . . , cn);

- a family of equivariant, associative and unital composition operations

P(c1, . . . , cn)×P(d1, . . . , dm) −→ P(c1, . . . , ĉi , . . . , d1, . . . d̂j , . . . , dm),

when ci = dj .
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Modular Operads

A C-coloured modular operad is a cyclic operad which also has

- a family of equivariant contraction operations

P(c1, . . . , cn) −→ P(c1, . . . , ĉi , . . . , ĉj , . . . cn),

when ci = cj .

satisfying some axioms.
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Example: A modular operad of surfaces
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Exercise: ∗-autonomous categories

∗-autonomous categories are closed symmetric monoidal categories with a
global dualizing object so that (a†)† ∼= a. Show that all strict
∗-autonomous categories are examples of cyclic operads. (See Example
2.2 in D-C–H).
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Goal for Today:

There is an equivalence of categories:

ModOp SetU
op

Segal .
N
∼=
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Graphs:

A graph G is a diagram of finite sets:

A D Vi
s t

- i is a free involution;

- s is a monomorphism.
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Graphs: Edges and Internal Edges

The involution on half-edges i : a 7→ a† determines the edges of a graph.

- An edge is just an i-orbit [a, a†].

- An internal edge is an edge of the form [b, b†] where both b and b†

are in D.
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Special Graphs, Boundaries and Neighbourhoods

Figure 1: The exceptional edge l and the 4-star ?4.

Definition

- The boundary of a graph: ∂(G ) = A \ D.
- The neighbourhood of v ∈ V (G ): nb(v) = t−1(v) ⊆ D.
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A loop with 2 nodes and a nodeless loop

9



Exercise

Draw a graph G with A = {1, 2, 3, 4, 5, 6, 7, 8}, D = {1, 2, 3, 4, 5, 6, 7, 8},
V = {v1, v2, v3, v4} and i(n) = n − 1 for n = 2, 4, 6, 8.
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Exercise: The star of a vertex and star of a graph

Definition

- The star of a graph FG is the one-vertex graph with A = ∂(G ) t
∂(G )†, D = ∂(G )† and ∂(FG ) = A \ D = ∂(G ). In other words,
FG = F∂(G).

- If v is a vertex in G , the star of a vertex Fv is the one-vertex graph
with A = nb(v) t nb(v)† and ∂(Fv ) = nb(v)†.

Exercise
For the graph G drawn above, write down FG and Fv for each
v ∈ V (G ).
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Morphisms of Graphs

Graphs are diagrams in FinSet in the shape of

I := • • •i
s t

Definition
A natural transformation f : G → G ′ is called an embedding if

A D V

A′ D ′ V ′

i

f

s

f

t

f

i ′
s′ t′

- the right-hand square is a pullback;

- V → V ′ a monomorphism.
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There is a class of vertex embeddings

Fv ↪→ G

for every v ∈ V (G ):

Example

Explicitly:
nb(v) t nb(v)† nb(v) {v}

A D V .

s t

s′ t
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There is a class of vertex embeddings

Fv ↪→ G

for every v ∈ V (G ):

Example
Explicitly:

nb(v) t nb(v)† nb(v) {v}

A D V .

s t

s′ t
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Embeddings are not necessarily injective on half-edges.

There is a natural embedding

Fn ↪→ ξFn

which is not injective on half-edges.
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Graphical Maps

Definition

A graphical map ϕ : G → G ′ consists of:

- a map of involutive sets ϕ0 : A→ A′;

- a function ϕ1 : V → Emb(G ′) satisfying the following conditions:

- The embeddings ϕ1(v) have no overlapping vertices
- For each v , the diagram:

nb(v) A

∂(ϕ1(v)) A′

∼=

i

ϕ0

commutes.
- If ∂(G ) = ∅, then there exists a v in V so that ϕ1(v) 6= l.
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Graphical Maps
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Inner coface maps

An inner coface map dv : G → G ′ is a graphical map defined by
“blowing-up” a single vertex v in G by a graph (dv )1 which has precisely
one internal edge.
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Outer coface maps

An outer coface map is either:

- an embedding de : G → G ′ in which G ′ has precisely one more
internal edge than G or

- an embedding l→Fn.
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Codegeneracy maps

A codegeneracy map sv : G → G ′ is a graphical map defined by
“blowing-up” a vertex v in G by l.
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The graphical category

The graphical category U is the category whose objects are connected
graphs. The morphisms are the graphical maps.
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The modular operad 〈G 〉 generated by a graph G is the free modular
operad whose:

- set of colours is the set of half-edges A;

- a collection E (a1, . . . , an) =

{
{v} if (a1, . . . , an) = ∂(?v )

∅ otherwise.
- 〈G 〉 = F (E )
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Proposition (Proposition 2.25 HRY2)
The assignment G 7→ 〈G 〉 defines a faithful functor U→ ModOp which is
injective on isomorphism classes of objects.
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Graphical Sets

The category of graphical sets is SetU
op

.

- XG : evaluation of X at G ∈ U.

- ϕ : G → G ′ ⇒ ϕ∗ : XG ′ → XG .

- The representable presheaf at G :

U[G ] := U(−;G )

U[G ]H := U(H,G )

for all graphs H.

23



Segal Maps

Internal edges ⇒ diagram of embeddings

Fv l Fw

in U.

Let

X 1
G = lim

Fv←l→Fw


XFv XFw

Xl

 .
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Segal Maps
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Segal Maps

The embeddings Fv ↪→ G induce a Segal map

XG X 1
G ⊆

∏
v∈V (G)

XFv

which factors through X 1
G .

Exercise
In the case when Xl = ∗, show that X 1

G =
∏

v∈V (G)

XFv .
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Segal Maps

The embeddings Fv ↪→ G induce a Segal map

XG X 1
G ⊆

∏
v∈V (G)

XFv

which factors through X 1
G .

Exercise
In the case when Xl = ∗, show that X 1

G =
∏

v∈V (G)

XFv .
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Segal graphical sets

A graphical set X ∈ SetU
op

is strictly Segal if the Segal map

XG X 1
G ⊆

∏
v∈V (G)

XFv

is a bijection for each G in U.
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The Nerve

N : ModOp SetU
op

NPG = ModOp(〈G 〉 ,P)

for any P ∈ ModOp and any G ∈ U.

NPG is “the set of P decorations of the graph G ”:

- NPl = ModOp(〈l〉 ,P) = C;

- NP?n = ModOp(〈?n〉 ,P) = P(c1, . . . cn).
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The Nerve Theorem

Theorem (Theorem 3.6 HRY2)
The nerve functor is fully faithful. Moreover, the following statements are
equivalent for X ∈ SetU

op

.

- There exists a modular operad P and an isomorphism X ∼= NP.

- X satisfies the strict Segal condition.

In other words:
ModOp SetU

op

Segal .
N
∼=
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Exercise: Graphs exhibit some strange behaviour

Given a graph G ∈ U, we now have two ways to assign an object in
SetU

op

to G :

- the representable presheaf U[G ],

- taking the nerve of the modular operad 〈G 〉, N 〈G 〉.

The representable U[G ] is a sub-object of N 〈G 〉 (since J : U→ ModOp
is faithful) but they nearly never coincide.

- Let G be the loop with one node and show U[G ] ⊂ N 〈G 〉.
- Show that we have U[?0] = N 〈?0〉.
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Further Directions

Earlier we defined the notion of (inner and outer) coface maps of U.
Given a coface map δ with codomain G , one can define the horn Λδ[G ]

which is a sub-object of the representable object U[G ]. A strict inner
Kan graphical set is a presheaf X ∈ SetsU

op

such that every diagram

Λδ[G ] X

U[G ]

with δ an inner coface map admits a unique filler.
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Further Directions

Michelle Strumila shows in her PhD thesis that :

Theorem (Strumila)
The nerve functor

N : ModOp SetU
op

is fully faithful. Moreover, the following statements are equivalent for
X ∈ SetU

op

.

There exists a modular operad P and an isomorphism X ∼= NP.

X satisfies the strict Segal condition.

X is strict inner Kan.

If one relaxes the inner Kan condition you arrive at a model for quasi or
∞-modular operads. Following the example of dendroidal sets, one
could find a model category structure in which the weak inner Kan
graphical sets are the fibrant objects. Because the graphical categories
for cyclic operads, wheeled properads, etc can all be derived from U this
would simultaneously create models for many flavours of ∞-“operads”. 32
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