Lecture 1: Graphs and Modular
Operads



Cyclic Operads

A ¢-coloured cyclic operad is an algebraic structure consisting of:

- an involutive set of colours ¢;
- foreach c1,...,c, € €a X,-set P(cy,...,cn);

- a family of equivariant, associative and unital composition operations
P(Cl,...,C,,)XP(dh...,dm) — P(Cl,...76,‘,...7(117...(1_/‘,...,dm)7

when ¢ = d|.



Modular Operads

A €-coloured modular operad is a cyclic operad which also has

- a family of equivariant contraction operations
P(er,....cn) — Pler, .., 6y 6jye o Cn),
when ¢ = ¢.

satisfying some axioms.



Example: A modular operad of surfaces



Exercise: x-autonomous categories

x-autonomous categories are closed symmetric monoidal categories with a
global dualizing object so that (af)" 22 a. Show that all strict
*-autonomous categories are examples of cyclic operads. (See Example
2.2 in D-C—H).



Goal for Today:

There is an equivalence of categories:
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ModOp —2— Sety,,,,.
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A graph G is a diagram of finite sets:
iCA——D L5V

- [ is a free involution;

- s is a monomorphism.

N0



Graphs: Edges and Internal Edges

N0

The involution on half-edges i : a — af determines the edges of a graph.

- An edge is just an j-orbit [a, af].
- An internal edge is an edge of the form [b, b'] where both b and b'
arein D.



Special Graphs, Boundaries and Neighbourhoods

Figure 1: The exceptional edge ] and the 4-star x4.

Definition
- The boundary of a graph: 9(G) = A\ D.
- The neighbourhood of v € V(G): nb(v) =t 1(v) C D.



A loop with 2 nodes and a nodeless loop



Exercise

Draw a graph G with A={1,2,3,4,5,6,7,8}, D ={1,2,3,4,5,6,7,8},
V ={v1,va,vs,va} and i(n) = n—1for n=2,4,6,8.
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Exercise: The star of a vertex and star of a graph

Definition
- The star of a graph % is the one-vertex graph with A = 9(G) U
A(G)t, D = 9(G)" and 9(ks) = A\ D = 9(G). In other words,
*c = Ko(6)-
- If v is a vertex in G, the star of a vertex ¥, is the one-vertex graph
with A = nb(v) Unb(v)" and d(%,) = nb(v)T.

Exercise
For the graph G drawn above, write down % ¢ and %, for each

v e V(G).
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Morphisms of Graphs

Graphs are diagrams in FinSet in the shape of

IT:= iCe+ o—L1 e

Definition
A natural transformation f : G — G’ is called an embedding if

iC A= D -tV

ool L

A D
- the right-hand square is a pullback;

- V — V' a monomorphism.
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There is a class of vertex embeddings
*, — G

for every v € V(G):

Example
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There is a class of vertex embeddings
*, — G

for every v € V(G):

Example

Explicitly:

nb(v) Linb(v)T «=— nb(v) —— {v}

|

A S

/
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Embeddings are not necessarily injective on half-edges.

There is a natural embedding

*, — ko

which is not injective on half-edges.

g g
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Graphical Maps

Definition
A graphical map ¢ : G — G’ consists of:

- a map of involutive sets g : A — A’;
- a function ¢1 : V — Emb(G’) satisfying the following conditions:

- The embeddings 1(v) have no overlapping vertices
- For each v, the diagram:

nb(v) —— A

«| Lao

(pr(v)) — A

commutes.
- If 9(G) = 0, then there exists a v in V so that ¢1(v) # .
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Graphical Maps
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Inner coface maps

An inner coface map d, : G — G’ is a graphical map defined by
“blowing-up” a single vertex v in G by a graph (d,); which has precisely
one internal edge.

AN
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Outer coface maps

An outer coface map is either:

- an embedding d. : G — G’ in which G’ has precisely one more
internal edge than G or

- an embedding [— % .

AN
< )
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Codegeneracy maps

A codegeneracy map s, : G — G’ is a graphical map defined by
“blowing-up” a vertex v in G by .
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The graphical category

The graphical category U is the category whose objects are connected
graphs. The morphisms are the graphical maps.

20



The modular operad (G) generated by a graph G is the free modular
operad whose:

- set of colours is the set of half-edges A;

{v}if (a1,...,a,) = (%)

- a collection E(ay,...,a,) = _
() otherwise.
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Proposition (Proposition 2.25 HRY?2)
The assignment G +— (G) defines a faithful functor U — ModOp which is

injective on isomorphism classes of objects.

A
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Graphical Sets

The category of graphical sets is SetV”.

- Xg: evaluation of X at G € U.
-9:G— G =" X — Xg.

- The representable presheaf at G:
U[G] :=U(—; G)

U[G]n := U(H, G)
for all graphs H.
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Segal Maps

Internal edges = diagram of embeddings
*, —— L ——
in U.

Let

Xx, X
Xt = lim
€T \ /
X3
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Segal Maps

N
)



Segal Maps

The embeddings %, < G induce a Segal map

Xe — XEC I X,
veV(G)

which factors through X¢.
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Segal Maps

The embeddings %, < G induce a Segal map

XG—>Xé§ T Xx.

veV(G)
which factors through X¢.
Exercise
In the case when X; = x, show that X} = J] Xa,.
veV(G)
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Segal graphical sets

A graphical set X € SetV” is strictly Segal if the Segal map

Xg —— Xcl; C I X,
veVv(G)

is a bijection for each G in U.
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N : ModOp —— SetV”
NP = ModOp({G),P)
for any P € ModOp and any G € U.
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N : ModOp —— SetV”
NP = ModOp({G),P)
for any P € ModOp and any G € U.

NP is “the set of P decorations of the graph G

- NPy = ModOp((1),P) = ¢;
- NP,, = ModOp({(*,),P) = P(c1,...cn).
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The Nerve Theorem

Theorem (Theorem 3.6 HRY?2)
The nerve functor is fully faithful. Moreover, the following statements are

equivalent for X € SetV”.

- There exists a modular operad P and an isomorphism X = NP.

- X satisfies the strict Segal condition.
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The Nerve Theorem

Theorem (Theorem 3.6 HRY?2)
The nerve functor is fully faithful. Moreover, the following statements are

equivalent for X € SetV”.

- There exists a modular operad P and an isomorphism X = NP.

- X satisfies the strict Segal condition.

In other words:
u°r

ModOp —2— Set.,.,.
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Exercise: Graphs exhibit some strange behaviour

Given a graph G € U, we now have two ways to assign an object in
SetY” to G:

- the representable presheaf U[G],
- taking the nerve of the modular operad (G), N (G).

The representable U[G] is a sub-object of N (G) (since J : U — ModOp
is faithful) but they nearly never coincide.

- Let G be the loop with one node and show U[G] C N (G).
- Show that we have U[xo] = N (o).
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Further Directions

Earlier we defined the notion of (inner and outer) coface maps of U.
Given a coface map § with codomain G, one can define the horn A°[G]
which is a sub-object of the representable object U[G]. A strict inner
Kan graphical set is a presheaf X € SetsV” such that every diagram

N[G] — X

L

uiG]

with § an inner coface map admits a unique filler.
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Further Directions

Michelle Strumila shows in her PhD thesis that :

Theorem (Strumila)
The nerve functor

N : ModOp — SetV”

is fully faithful. Moreover, the following statements are equivalent for
X € SetV”.

There exists a modular operad P and an isomorphism X = NP.
X satisfies the strict Segal condition.

X is strict inner Kan.

If one relaxes the inner Kan condition you arrive at a model for quasi or
oo-modular operads. Following the example of dendroidal sets, one
could find a model category structure in which the weak inner Kan
graphical sets are the fibrant objects. Because the graphical categories
for cyclic operads, wheeled properads, etc can all be derived from U this

would simultaneously create models for many flavours of co-"operads’. 32
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