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A really fast introduction to a lot of cool math:

- Let Gal(Q) denote the absolute Galois group of Q.

- This is a large profinite group:

Ĝ = limG/H

but we don’t even know the finite quotients of Gal(Q)!

Idea : Identify g ∈ Gal(Q) with a pair

(χ(g), fg ) ∈ Ẑ∗ × F̂ ′2

- χ(g) is the cyclotomic character.
- F̂2 = π1(M0,4) ∼= Γ̂0,4.
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A slightly easier group: ĜT

Notation: For any homomorphism of profinite groups

F̂2 G

(x , y) (a, b)

we write f (a, b) for the image of any f ∈ F̂2. For example:

- Given id : F̂2 → F̂2, we have f = f (x , y);

- Given the map F̂2 → F̂2 which swaps generators x and y we have
f 7→ f (y , x).
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A slightly easier group: ĜT

The Grothendieck-Teichmüller group ĜT is the group of pairs

(λ, f ) ∈ Ẑ∗ × F̂ ′2

satsfying the property that

x 7→ xλ and y 7→ f −1yλf

induce an automorphism of F̂2 and :

(I) f (x , y)f (y , x) = 1,
(II) f (x , y)xmf (z , x)zmf (y , z)ym = 1 where xyz = 1 and m = (λ−1)/2,
(III) f (x34, x45)f (x51, x12)f (x23, x34)f (x45, x51)f (x12, x23) = 1 in Γ0,5

where xij is a Dehn twist of boundaries i and j .

Theorem (Ihara)
There is an injection Gal(Q) ↪→ ĜT.
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So our question becomes: What is ĜT?

- F̂2 ∼= Γ̂0,4

- relations in ĜT are coming from mapping class groups.
- The mapping class group has a presentation

Γg ,n = 〈α1, . . . , αk | (C ), (B), (D), (L)〉 .
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Pants Decompositions

A pants decomposition of Σg ,n is a collection of simple closed curves
that cuts Σg ,n into pairs of pants (i.e. Σ0,3).
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We break Mapping Class Groups into Pants Decompositions

Notice that a pants decomposition looks like the result of a
composition.

×
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Modular Operads



Cyclic Operads

A C-coloured cyclic operad is an algebraic structure consisting of:

- an involutive set of colours C;

- for each c1, . . . , cn ∈ C a Σn-set P(c1, . . . , cn);

- a family of equivariant, associative and unital composition operations

P(c1, . . . , cn)×P(d1, . . . , dm) −→ P(c1, . . . , ĉi , . . . , d1, . . . d̂j , . . . , dm),

when ci = d†j .
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×
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Modular Operads

A C-coloured modular operad is a cyclic operad which also has

- a family of equivariant contraction operations

P(c1, . . . , cn) −→ P(c1, . . . , ĉi , . . . , ĉj , . . . cn),

when ci = c†j .

satisfying some axioms.
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A modular operad is almost the right thing for studying Γ̂g ,n

There is an equivalence of categories:

ModOp SetU
op

Segal .
N
∼=
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Graphs:

A graph G is a diagram of finite sets:

A D Vi
s t

- i is a free involution;

- s is a monomorphism.
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Graphical Maps
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Inner coface maps

An inner coface map dv : G → G ′ is a graphical map defined by
“blowing-up” a single vertex v in G by a graph which has precisely one
internal edge.

15



Outer coface maps

An outer coface map is either:

- an embedding de : G → G ′ in which G ′ has precisely one more
internal edge than G or

- an embedding l→Fn.

16



Codegeneracy maps

A codegeneracy map sv : G → G ′ is a graphical map defined by
“blowing-up” a vertex v in G by l.
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The graphical category

The graphical category U is the category whose objects are connected
graphs. The morphisms are composites of inner coface maps, outer
coface maps, codegeneracies and isomorphisms.
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Graphical Sets

The category of graphical sets is SetU
op

.

- XG : evaluation of X at G ∈ U.

- ϕ : G → G ′ ⇒ ϕ∗ : XG ′ → XG .
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A special graphical set made of internal edges: X 1
G = lim

Fv←l→Fw
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Segal Maps

The embeddings Fv ↪→ G induce a Segal map

XG X 1
G ⊆

∏
v∈V (G)

XFv

which factors through X 1
G .
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Segal graphical sets

A graphical set X ∈ SetU
op

is strictly Segal if the Segal map

XG X 1
G ⊆

∏
v∈V (G)

XFv

is a bijection for each G in U.

Theorem (HRY20b)
There is an equivalence of categories:

ModOp SetU
op

Segal .
N
∼=

23



Segal graphical sets

A graphical set X ∈ sSetU
op

is weakly Segal if the Segal map

XG X 1
G ⊆

∏
v∈V (G)

XFv

is a weak homotopy equivalence for each G in U.
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Weak Segal Modular Operads
Take Us Back To Gal(Q)



A modular operad of Seamed Surfaces

The goupoid Sg ,n:

- objects are surfaces P := (Σg ,n,P,Q) together with a “atomic”
pants decomposition;

- morphisms are π0Diff
+(Σg ,n, ∂, σ).

Σn acts freely on Sg ,n by permuting the labels of boundaries ⇒

BSg ,n ' BΓg ,n.
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A modular operad of Seamed Surfaces

Operations:

Sg ,n ×ij Sh,k Sg+h,n+k−2
◦ij

and

Sg ,n Sg+1,n−2
ξij

can be defined on objects by gluing surfaces and on morphisms as the
“combination" of the maps on the subsurfaces.

These are well-defined, associative operations and thus

S = {Sg ,n}

assembles into a modular operad in groupoids. ⇒

NS = {NSg ,n} ∈ SetU
op

Segal .
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The genus 0 case

Proposition (BHR)

ĜT ∼= π0 maph(NŜ0,NŜ0)

But to get back to our comparison with the mapping class groups:

Theorem (BHR)

ĜT ∼= π0 maph(BN̂S0,BN̂S0)

Point: Here we can see how Gal(Q) acts.
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Groups Related to ĜT: The higher genus case

There is a subgroup Λ ⊆ ĜT:

Theorem (BR)
There is an isomorphism

Λ ∼= End0(NŜ).

Theorem (BR - In Progress)
There is an isomorphism

Λ ∼= π0 maph(BN̂S).

Question: Can weak Segal modular operads give us even more
information about Gal(Q)?
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Thanks!
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