Automorphisms of seemed surfaces, modular operads and Galois actions

Marcy Robertson (University of Melbourne)

joint with: Boavida, Bonatto, Hackney, Horel and Yau

A really fast introduction to a lot of cool math:

- Let $Gal(\mathbb{Q})$ denote the absolute Galois group of \mathbb{Q} .
- This is a large profinite group:

 $\widehat{G} = \lim G/H$

but we don't even know the finite quotients of $Gal(\mathbb{Q})!$

Idea : Identify $g \in Gal(\mathbb{Q})$ with a pair

 $(\chi(g), f_g) \in \widehat{\mathbb{Z}}^* \times \widehat{F}'_2$

- $\chi(g)$ is the cyclotomic character.
- $\widehat{F}_2 = \pi_1(\mathcal{M}_{0,4}) \cong \widehat{\Gamma}_{0,4}.$

Notation: For any homomorphism of profinite groups

$$\widehat{F}_2 \longrightarrow G$$

$$(x,y) \longmapsto (a,b)$$

we write f(a, b) for the image of any $f \in \widehat{F}_2$. For example:

- Given $id: \widehat{F}_2 \to \widehat{F}_2$, we have f = f(x, y);
- Given the map $\widehat{F}_2 \to \widehat{F}_2$ which swaps generators x and y we have $f \mapsto f(y, x)$.

A slightly easier group: \widehat{GT}

The ${\bf Grothendieck-Teichmüller}\ {\bf group}\ \widehat{{\sf GT}}$ is the group of pairs

$$(\lambda, f) \in \widehat{\mathbb{Z}}^* \times \widehat{F}'_2$$

satsfying the property that

$$x\mapsto x^\lambda$$
 and $y\mapsto f^{-1}y^\lambda f$

induce an automorphism of \widehat{F}_2 and :

(I)
$$f(x, y)f(y, x) = 1$$
,
(II) $f(x, y)x^m f(z, x)z^m f(y, z)y^m = 1$ where $xyz = 1$ and $m = (\lambda - 1)/2$,
(III) $f(x_{34}, x_{45})f(x_{51}, x_{12})f(x_{23}, x_{34})f(x_{45}, x_{51})f(x_{12}, x_{23}) = 1$ in $\Gamma_{0,5}$
where x_{ij} is a Dehn twist of boundaries *i* and *j*.

Theorem (Ihara) There is an injection $Gal(\mathbb{Q}) \hookrightarrow \widehat{GT}$.

So our question becomes: What is \widehat{GT} ?

- $\widehat{F}_2\cong\widehat{\Gamma}_{0,4}$
- relations in $\widehat{\mathsf{GT}}$ are coming from mapping class groups.
- The mapping class group has a presentation

$$\Gamma_{g,n} = \langle \alpha_1, \ldots, \alpha_k \mid (C), (B), (D), (L) \rangle.$$

Pants Decompositions

A **pants decomposition** of $\Sigma_{g,n}$ is a collection of simple closed curves that cuts $\Sigma_{g,n}$ into *pairs of pants* (i.e. $\Sigma_{0,3}$).

Notice that a **pants decomposition** looks like the result of a composition.

Notice that a **pants decomposition** looks like the result of a composition.

Modular Operads

A \mathfrak{C} -coloured **cyclic operad** is an algebraic structure consisting of:

- an involutive set of colours $\ensuremath{\mathfrak{C}}$;
- for each $c_1,\ldots,c_n\in \mathfrak{C}$ a Σ_n -set P (c_1,\ldots,c_n) ;
- a family of equivariant, associative and unital composition operations

$$\mathsf{P}(c_1, \ldots, c_n) \times \mathsf{P}(d_1, \ldots, d_m) \longrightarrow \mathsf{P}(c_1, \ldots, \hat{c}_i, \ldots, d_1, \ldots, \hat{d}_j, \ldots, d_m),$$

when $c_i = d_j^{\dagger}$.

A $\operatorname{\mathfrak{C}\text{-coloured}}$ modular operad is a cyclic operad which also has

- a family of equivariant contraction operations

$$\mathsf{P}(c_1,\ldots,c_n)\longrightarrow\mathsf{P}(c_1,\ldots,\hat{c}_i,\ldots,\hat{c}_j,\ldots c_n),$$
 when $c_i=c_j^\dagger.$

satisfying some axioms.

A modular operad is almost the right thing for studying $\widehat{\Gamma}_{g,n}$

There is an equivalence of categories:

$$\mathsf{ModOp} \xrightarrow{N} \mathbf{Set}_{Segal}^{\mathsf{U}^{op}}.$$

Graphs:

A graph G is a diagram of finite sets:

$$i \stackrel{\sim}{\longrightarrow} A \stackrel{s}{\longleftarrow} D \stackrel{t}{\longrightarrow} V$$

- *i* is a free involution;
- *s* is a monomorphism.

An **inner coface map** $d_v : G \to G'$ is a graphical map defined by "blowing-up" a single vertex v in G by a graph which has precisely **one** internal edge.

Outer coface maps

An outer coface map is either:

- an **embedding** $d_e: G \to G'$ in which G' has precisely **one** more internal edge than G or
- an embedding $\uparrow \rightarrow \bigstar_n$.

A **codegeneracy map** $s_v : G \to G'$ is a graphical map defined by "blowing-up" a vertex v in G by \updownarrow .

The **graphical category** U is the category whose objects are connected graphs. The morphisms are composites of inner coface maps, outer coface maps, codegeneracies and isomorphisms.

The category of **graphical sets** is $Set^{U^{op}}$.

- X_G : evaluation of X at $G \in U$.
- $\varphi: G \to G' \Rightarrow \varphi^*: X_{G'} \to X_G.$

A special graphical set made of internal edges: $X_G^1 = \lim_{\bigstar_v \leftarrow \updownarrow \rightarrow \bigstar_w}$

The embeddings $\bigstar_{v} \hookrightarrow G$ induce a Segal map

$$X_G \longrightarrow X_G^1 \subseteq \prod_{v \in V(G)} X_{\bigstar_v}$$

which factors through X_G^1 .

A graphical set $X \in \text{Set}^{U^{op}}$ is strictly **Segal** if the Segal map

$$X_G \longrightarrow X^1_G \subseteq \prod_{v \in V(G)} X_{\bigstar_v}$$

is a bijection for each G in U.

Theorem (HRY20b) There is an equivalence of categories:

$$\mathsf{ModOp} \xrightarrow{N} \mathbf{Set}^{\mathsf{U}^{op}}_{\mathit{Segal}}.$$

A graphical set $X \in sSet^{U^{op}}$ is weakly **Segal** if the Segal map

$$X_G \longrightarrow X_G^1 \subseteq \prod_{v \in V(G)} X_{\bigstar_v}$$

is a weak homotopy equivalence for each G in U.

Weak Segal Modular Operads Take Us Back To $Gal(\mathbb{Q})$

The goupoid $S_{g,n}$:

- objects are surfaces P := (Σ_{g,n}, P, Q) together with a "atomic" pants decomposition;
- morphisms are $\pi_0 \text{Diff}^+(\Sigma_{g,n}, \partial, \sigma)$.

 Σ_n acts freely on $\mathcal{S}_{g,n}$ by permuting the labels of boundaries \Rightarrow

 $BS_{g,n} \simeq B\Gamma_{g,n}.$

A modular operad of Seamed Surfaces

Operations:

$$\mathcal{S}_{g,n} \times_{ij} \mathcal{S}_{h,k} \xrightarrow{\circ_{ij}} \mathcal{S}_{g+h,n+k-2}$$

and

$$\mathcal{S}_{g,n} \xrightarrow{\xi_{ij}} \mathcal{S}_{g+1,n-2}$$

can be defined on objects by gluing surfaces and on morphisms as the "combination" of the maps on the subsurfaces.

These are well-defined, associative operations and thus

$$S = \{S_{g,n}\}$$

assembles into a modular operad in groupoids. \Rightarrow

$$NS = \{NS_{g,n}\} \in \mathsf{Set}_{Segal}^{\mathsf{U}^{op}}.$$

Proposition (BHR)

$$\widehat{\mathsf{GT}}\cong\pi_0\operatorname{\mathsf{map}}^h(N\widehat{\mathcal{S}_0},N\widehat{\mathcal{S}_0})$$

But to get back to our comparison with the mapping class groups: **Theorem (BHR)** $\widehat{\mathsf{GT}} \cong \pi_0 \operatorname{map}^h(B\widehat{NS_0}, B\widehat{NS_0})$

Proposition (BHR)

$$\widehat{\mathsf{GT}}\cong\pi_0\operatorname{\mathsf{map}}^h(N\widehat{\mathcal{S}_0},N\widehat{\mathcal{S}_0})$$

But to get back to our comparison with the mapping class groups: **Theorem (BHR)** $\widehat{GT} \cong \pi_0 \operatorname{map}^h(B\widehat{NS}_0, B\widehat{NS}_0)$

Point: Here we can see how $Gal(\mathbb{Q})$ acts.

Groups Related to \widehat{GT} : The higher genus case

There is a subgroup $\Lambda \subseteq \widehat{\mathsf{GT}}$:

Theorem (BR) There is an isomorphism

 $\Lambda \cong \operatorname{End}_0(N\widehat{\mathcal{S}}).$

Theorem (BR - In Progress) There is an isomorphism

$$\Lambda \cong \pi_0 \operatorname{map}^h(B\widehat{NS}).$$

Question: Can weak Segal modular operads give us even more information about $Gal(\mathbb{Q})$?

Thanks!